3,866 research outputs found

    Effect of a rigid ankle-foot orthosis on hamstring length in children with hemiplagia

    Get PDF
    Eighteen children with hemiplegia, mean age 8 years 5 months, underwent gait analysis and musculoskeletal modelling using specially designed software. The maximum lengths of the hamstrings were determined for each child walking in and out of an ankle–foot orthosis (AFO). The muscles were deemed to be short if shorter than the normal average – 1SD. In bare feet 8 participants had short medial hamstrings with a higher proportion of these in the less involved individuals. All participants showed an increase in maximum hamstring length when wearing an AFO. In all but one child this was sufficient to restore hamstring length to within normal limits. These finding suggest that hamstring pathology in hemiplegic gait is usually secondary to more distal lower limb pathology

    Experiencing education in the new Christian schools in the United Kingdom : listening to the male graduates

    Get PDF
    The new independent Christian schools developed by parents and evangelical churches in the United Kingdom since the late 1960s remain controversial among both Christian and secular educators. In response to this controversy, the present study traced 106 men who had graduated from these schools between 1985 and 2003 and analysed their evaluation of the education they had received in these schools within four main themes: the quality of the education, the context of Christian and moral nurture, the quality of relationships (among the pupils, with the teachers and with the wider world) and preparation received for life after leaving school. Although there were some issues of criticism, the balance of opinion among the former pupils within all four areas was generally supportive of the new independent Christian schools, which were generally perceived as having prepared them well for life

    Physiological, perceptual, and technical responses to on-court tennis training on hard and clay courts

    Full text link
    The aim of this study was to investigate the effect of court surface (clay vs. hard court) on technical, physiological, and perceptual responses to on-court tennis training. Four high-performance junior male players performed 2 identical training sessions on hard and clay courts, respectively. Sessions included both physical conditioning and technical elements as led by the coach. Each session was filmed for later notational analysis of stroke count and error rates. Furthermore, players wore a global positioning satellite device to measure distance covered during each session, while heart rate, countermovement jump distance, and capillary blood measures of metabolites were measured before, during, and after each session. Additionally, a respective coach and athlete rating of perceived exertion (RPE) were measured after each session. Total duration and distance covered during each session were comparable (p > 0.05; d 0.05; d 0.05; d > 0.90). Furthermore, large effects for increased heart rate, blood lactate, and RPE values were evident on clay compared with hard courts (p > 0.05; d > 0.90). Additionally, although player and coach RPE on hard courts were similar, there were large effects for coaches to underrate the RPE of players on clay courts (p > 0.05; d > 0.90). In conclusion, training on clay courts results in trends for increased heart rate, lactate, and RPE values, suggesting that sessions on clay courts tend towards higher physiological and perceptual loads than hard courts. Furthermore, coaches seem effective at rating player RPE on hard courts but may underrate the perceived exertion of sessions on clay courts. © 2013 National Strength and Conditioning Association

    Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute

    Full text link
    Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fundamental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.Comment: Proceedings of the International Conference on Exotic Atoms and Related Topics - EXA2011 September 5-9, 2011 Austrian Academy of Sciences, Theatersaal, Sonnenfelsgasse 19, 1010 Wien, Austria 6 pages, 3 figure

    Bicarbonate-controlled reduction of oxygen by the QA semiquinone in Photosystem II in membranes

    Get PDF
    Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, plays a key energy input role in the biosphere. Q∙−A, the reduced semiquinone form of the nonexchangeable quinone, is often considered capable of a side reaction with O2, forming superoxide, but this reaction has not yet been demonstrated experimentally. Here, using chlorophyll fluorescence in plant PSII membranes, we show that O2 does oxidize Q∙−A at physiological O2 concentrations with a t1/2 of 10 s. Superoxide is formed stoichiometrically, and the reaction kinetics are controlled by the accessibility of O2 to a binding site near Q∙−A, with an apparent dissociation constant of 70 ± 20 µM. Unexpectedly, Q∙−A could only reduce O2 when bicarbonate was absent from its binding site on the nonheme iron (Fe2+) and the addition of bicarbonate or formate blocked the O2-dependant decay of Q∙−A. These results, together with molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations, indicate that electron transfer from Q∙−A to O2 occurs when the O2 is bound to the empty bicarbonate site on Fe2+. A protective role for bicarbonate in PSII was recently reported, involving long-lived Q∙−A triggering bicarbonate dissociation from Fe2+ [Brinkert et al., Proc. Natl. Acad. Sci. U.S.A. 113, 12144–12149 (2016)]. The present findings extend this mechanism by showing that bicarbonate release allows O2 to bind to Fe2+ and to oxidize Q∙−A. This could be beneficial by oxidizing Q∙−A and by producing superoxide, a chemical signal for the overreduced state of the electron transfer chain

    Genetic analysis of four consanguineous multiplex families with inflammatory bowel disease

    Get PDF
    Background: Family studies support a genetic predisposition to inflammatory bowel diseases (IBD), but known genetic variants only partially explain the disease heritability. Families with multiple affected individuals potentially harbour rare and high-impact causal variants. Long regions of homozygosity due to recent inbreeding may increase the risk of individuals bearing homozygous loss-of-function variants. This study aimed to identify rare and homozygous genetic variants contributing to IBD. Methods: Four families with known consanguinity and multiple cases of IBD were recruited. In a family-specific analysis, we utilised homozygosity mapping complemented by whole-exome sequencing. Results: We detected a single region of homozygosity shared by Crohn's disease cases from a family of Druze ancestry, spanning 2.6 Mb containing the NOD2 gene. Whole-exome sequencing did not identify any potentially damaging variants within the region, suggesting that non-coding variation may be involved. In addition, affected individuals in the families harboured several rare and potentially damaging homozygous variants in genes with a role in autophagy and innate immunity including LRRK1, WHAMM, DENND3, and C5. Conclusion: This study examined the potential contribution of rare, high-impact homozygous variants in consanguineous families with IBD. While the analysis was not designed to achieve statistical significance, our findings highlight genes or loci that warrant further research. Non-coding variants affecting NOD2 may be of importance in Druze patients with Crohn's disease

    Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind

    Get PDF
    During 2-18 January 2008 a pair of low-latitude opposite-polarity coronal holes (CHs) were observed on the Sun with two active regions (ARs) and the heliospheric plasma sheet located between them. We use the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related outflows and measure their velocities. Solar-Terrestrial Relations Observatory (STEREO) imaging is also employed, as are the Advanced Composition Explorer (ACE) in-situ observations, to assess the resulting impacts on the solar wind (SW) properties. Magnetic-field extrapolations of the two ARs confirm that AR plasma outflows observed with EIS are co-spatial with quasi-separatrix layer locations, including the separatrix of a null point. Global potential-field source-surface modeling indicates that field lines in the vicinity of the null point extend up to the source surface, enabling a part of the EIS plasma upflows access to the SW. We find that similar upflow properties are also observed within closed-field regions that do not reach the source surface. We conclude that some of plasma upflows observed with EIS remain confined along closed coronal loops, but that a fraction of the plasma may be released into the slow SW. This suggests that ARs bordering coronal holes can contribute to the slow SW. Analyzing the in-situ data, we propose that the type of slow SW present depends on whether the AR is fully or partially enclosed by an overlying streamer. © 2012 Springer Science+Business Media B.V
    • …
    corecore